跳到内容

ParEGO#

展开复制 examples/3_multi_objective/2_parego.py (右上角)
from __future__ import annotations

import time
import warnings

import matplotlib.pyplot as plt
import numpy as np
from ConfigSpace import (
    Categorical,
    Configuration,
    ConfigurationSpace,
    EqualsCondition,
    Float,
    InCondition,
    Integer,
)
from sklearn.datasets import load_digits
from sklearn.model_selection import StratifiedKFold, cross_val_score
from sklearn.neural_network import MLPClassifier

from smac import HyperparameterOptimizationFacade as HPOFacade
from smac import Scenario
from smac.facade.abstract_facade import AbstractFacade
from smac.multi_objective.parego import ParEGO

__copyright__ = "Copyright 2025, Leibniz University Hanover, Institute of AI"
__license__ = "3-clause BSD"


digits = load_digits()


class MLP:
    @property
    def configspace(self) -> ConfigurationSpace:
        cs = ConfigurationSpace()

        n_layer = Integer("n_layer", (1, 5), default=1)
        n_neurons = Integer("n_neurons", (8, 256), log=True, default=10)
        activation = Categorical("activation", ["logistic", "tanh", "relu"], default="tanh")
        solver = Categorical("solver", ["lbfgs", "sgd", "adam"], default="adam")
        batch_size = Integer("batch_size", (30, 300), default=200)
        learning_rate = Categorical("learning_rate", ["constant", "invscaling", "adaptive"], default="constant")
        learning_rate_init = Float("learning_rate_init", (0.0001, 1.0), default=0.001, log=True)

        cs.add([n_layer, n_neurons, activation, solver, batch_size, learning_rate, learning_rate_init])

        use_lr = EqualsCondition(child=learning_rate, parent=solver, value="sgd")
        use_lr_init = InCondition(child=learning_rate_init, parent=solver, values=["sgd", "adam"])
        use_batch_size = InCondition(child=batch_size, parent=solver, values=["sgd", "adam"])

        # We can also add multiple conditions on hyperparameters at once:
        cs.add([use_lr, use_batch_size, use_lr_init])

        return cs

    def train(self, config: Configuration, seed: int = 0, budget: int = 10) -> dict[str, float]:
        lr = config.get("learning_rate", "constant")
        lr_init = config.get("learning_rate_init", 0.001)
        batch_size = config.get("batch_size", 200)

        start_time = time.time()

        with warnings.catch_warnings():
            warnings.filterwarnings("ignore")

            classifier = MLPClassifier(
                hidden_layer_sizes=[config["n_neurons"]] * config["n_layer"],
                solver=config["solver"],
                batch_size=batch_size,
                activation=config["activation"],
                learning_rate=lr,
                learning_rate_init=lr_init,
                max_iter=int(np.ceil(budget)),
                random_state=seed,
            )

            # Returns the 5-fold cross validation accuracy
            cv = StratifiedKFold(n_splits=5, random_state=seed, shuffle=True)  # to make CV splits consistent
            score = cross_val_score(classifier, digits.data, digits.target, cv=cv, error_score="raise")

        return {
            "1 - accuracy": 1 - np.mean(score),
            "time": time.time() - start_time,
        }


def plot_pareto(smac: AbstractFacade, incumbents: list[Configuration]) -> None:
    """Plots configurations from SMAC and highlights the best configurations in a Pareto front."""
    average_costs = []
    average_pareto_costs = []
    for config in smac.runhistory.get_configs():
        # Since we use multiple seeds, we have to average them to get only one cost value pair for each configuration
        average_cost = smac.runhistory.average_cost(config)

        if config in incumbents:
            average_pareto_costs += [average_cost]
        else:
            average_costs += [average_cost]

    # Let's work with a numpy array
    costs = np.vstack(average_costs)
    pareto_costs = np.vstack(average_pareto_costs)
    pareto_costs = pareto_costs[pareto_costs[:, 0].argsort()]  # Sort them

    costs_x, costs_y = costs[:, 0], costs[:, 1]
    pareto_costs_x, pareto_costs_y = pareto_costs[:, 0], pareto_costs[:, 1]

    plt.scatter(costs_x, costs_y, marker="x", label="Configuration")
    plt.scatter(pareto_costs_x, pareto_costs_y, marker="x", c="r", label="Incumbent")
    plt.step(
        [pareto_costs_x[0]] + pareto_costs_x.tolist() + [np.max(costs_x)],  # We add bounds
        [np.max(costs_y)] + pareto_costs_y.tolist() + [np.min(pareto_costs_y)],  # We add bounds
        where="post",
        linestyle=":",
    )

    plt.title("Pareto-Front")
    plt.xlabel(smac.scenario.objectives[0])
    plt.ylabel(smac.scenario.objectives[1])
    plt.legend()
    plt.show()


if __name__ == "__main__":
    mlp = MLP()
    objectives = ["1 - accuracy", "time"]

    # Define our environment variables
    scenario = Scenario(
        mlp.configspace,
        objectives=objectives,
        walltime_limit=30,  # After 30 seconds, we stop the hyperparameter optimization
        n_trials=200,  # Evaluate max 200 different trials
        n_workers=1,
    )

    # We want to run five random configurations before starting the optimization.
    initial_design = HPOFacade.get_initial_design(scenario, n_configs=5)
    multi_objective_algorithm = ParEGO(scenario)
    intensifier = HPOFacade.get_intensifier(scenario, max_config_calls=2)

    # Create our SMAC object and pass the scenario and the train method
    smac = HPOFacade(
        scenario,
        mlp.train,
        initial_design=initial_design,
        multi_objective_algorithm=multi_objective_algorithm,
        intensifier=intensifier,
        overwrite=True,
    )

    # Let's optimize
    incumbents = smac.optimize()

    # Get cost of default configuration
    default_cost = smac.validate(mlp.configspace.get_default_configuration())
    print(f"Validated costs from default config: \n--- {default_cost}\n")

    print("Validated costs from the Pareto front (incumbents):")
    for incumbent in incumbents:
        cost = smac.validate(incumbent)
        print("---", cost)

    # Let's plot a pareto front
    plot_pareto(smac, incumbents)

描述#

一个展示如何在 ParEGO 中使用多目标优化的示例。将使用 MLP 在 digits 数据集上同时优化准确性和运行时间,配置结果将在图中展示,其中最佳配置以帕累托前沿高亮显示。红色十字表示 SMAC 选择的最佳配置。

在优化过程中,SMAC 会在两个不同的随机种子下评估配置。因此,图中显示的是每个配置的平均准确性和运行时间。

from __future__ import annotations

import time
import warnings

import matplotlib.pyplot as plt
import numpy as np
from ConfigSpace import (
    Categorical,
    Configuration,
    ConfigurationSpace,
    EqualsCondition,
    Float,
    InCondition,
    Integer,
)
from sklearn.datasets import load_digits
from sklearn.model_selection import StratifiedKFold, cross_val_score
from sklearn.neural_network import MLPClassifier

from smac import HyperparameterOptimizationFacade as HPOFacade
from smac import Scenario
from smac.facade.abstract_facade import AbstractFacade
from smac.multi_objective.parego import ParEGO

__copyright__ = "Copyright 2025, Leibniz University Hanover, Institute of AI"
__license__ = "3-clause BSD"


digits = load_digits()


class MLP:
    @property
    def configspace(self) -> ConfigurationSpace:
        cs = ConfigurationSpace()

        n_layer = Integer("n_layer", (1, 5), default=1)
        n_neurons = Integer("n_neurons", (8, 256), log=True, default=10)
        activation = Categorical("activation", ["logistic", "tanh", "relu"], default="tanh")
        solver = Categorical("solver", ["lbfgs", "sgd", "adam"], default="adam")
        batch_size = Integer("batch_size", (30, 300), default=200)
        learning_rate = Categorical("learning_rate", ["constant", "invscaling", "adaptive"], default="constant")
        learning_rate_init = Float("learning_rate_init", (0.0001, 1.0), default=0.001, log=True)

        cs.add([n_layer, n_neurons, activation, solver, batch_size, learning_rate, learning_rate_init])

        use_lr = EqualsCondition(child=learning_rate, parent=solver, value="sgd")
        use_lr_init = InCondition(child=learning_rate_init, parent=solver, values=["sgd", "adam"])
        use_batch_size = InCondition(child=batch_size, parent=solver, values=["sgd", "adam"])

        # We can also add multiple conditions on hyperparameters at once:
        cs.add([use_lr, use_batch_size, use_lr_init])

        return cs

    def train(self, config: Configuration, seed: int = 0, budget: int = 10) -> dict[str, float]:
        lr = config.get("learning_rate", "constant")
        lr_init = config.get("learning_rate_init", 0.001)
        batch_size = config.get("batch_size", 200)

        start_time = time.time()

        with warnings.catch_warnings():
            warnings.filterwarnings("ignore")

            classifier = MLPClassifier(
                hidden_layer_sizes=[config["n_neurons"]] * config["n_layer"],
                solver=config["solver"],
                batch_size=batch_size,
                activation=config["activation"],
                learning_rate=lr,
                learning_rate_init=lr_init,
                max_iter=int(np.ceil(budget)),
                random_state=seed,
            )

            # Returns the 5-fold cross validation accuracy
            cv = StratifiedKFold(n_splits=5, random_state=seed, shuffle=True)  # to make CV splits consistent
            score = cross_val_score(classifier, digits.data, digits.target, cv=cv, error_score="raise")

        return {
            "1 - accuracy": 1 - np.mean(score),
            "time": time.time() - start_time,
        }


def plot_pareto(smac: AbstractFacade, incumbents: list[Configuration]) -> None:
    """Plots configurations from SMAC and highlights the best configurations in a Pareto front."""
    average_costs = []
    average_pareto_costs = []
    for config in smac.runhistory.get_configs():
        # Since we use multiple seeds, we have to average them to get only one cost value pair for each configuration
        average_cost = smac.runhistory.average_cost(config)

        if config in incumbents:
            average_pareto_costs += [average_cost]
        else:
            average_costs += [average_cost]

    # Let's work with a numpy array
    costs = np.vstack(average_costs)
    pareto_costs = np.vstack(average_pareto_costs)
    pareto_costs = pareto_costs[pareto_costs[:, 0].argsort()]  # Sort them

    costs_x, costs_y = costs[:, 0], costs[:, 1]
    pareto_costs_x, pareto_costs_y = pareto_costs[:, 0], pareto_costs[:, 1]

    plt.scatter(costs_x, costs_y, marker="x", label="Configuration")
    plt.scatter(pareto_costs_x, pareto_costs_y, marker="x", c="r", label="Incumbent")
    plt.step(
        [pareto_costs_x[0]] + pareto_costs_x.tolist() + [np.max(costs_x)],  # We add bounds
        [np.max(costs_y)] + pareto_costs_y.tolist() + [np.min(pareto_costs_y)],  # We add bounds
        where="post",
        linestyle=":",
    )

    plt.title("Pareto-Front")
    plt.xlabel(smac.scenario.objectives[0])
    plt.ylabel(smac.scenario.objectives[1])
    plt.legend()
    plt.show()


if __name__ == "__main__":
    mlp = MLP()
    objectives = ["1 - accuracy", "time"]

    # Define our environment variables
    scenario = Scenario(
        mlp.configspace,
        objectives=objectives,
        walltime_limit=30,  # After 30 seconds, we stop the hyperparameter optimization
        n_trials=200,  # Evaluate max 200 different trials
        n_workers=1,
    )

    # We want to run five random configurations before starting the optimization.
    initial_design = HPOFacade.get_initial_design(scenario, n_configs=5)
    multi_objective_algorithm = ParEGO(scenario)
    intensifier = HPOFacade.get_intensifier(scenario, max_config_calls=2)

    # Create our SMAC object and pass the scenario and the train method
    smac = HPOFacade(
        scenario,
        mlp.train,
        initial_design=initial_design,
        multi_objective_algorithm=multi_objective_algorithm,
        intensifier=intensifier,
        overwrite=True,
    )

    # Let's optimize
    incumbents = smac.optimize()

    # Get cost of default configuration
    default_cost = smac.validate(mlp.configspace.get_default_configuration())
    print(f"Validated costs from default config: \n--- {default_cost}\n")

    print("Validated costs from the Pareto front (incumbents):")
    for incumbent in incumbents:
        cost = smac.validate(incumbent)
        print("---", cost)

    # Let's plot a pareto front
    plot_pareto(smac, incumbents)