注意
点击这里下载完整的示例代码,或通过 Binder 在浏览器中运行此示例
重采样策略¶
在 auto-sklearn 中,可以通过指定参数 resampling_strategy
和 resampling_strategy_arguments
来使用不同的重采样策略。以下示例展示了 AutoSklearnClassifier
的常见设置。
import numpy as np
import sklearn.model_selection
import sklearn.datasets
import sklearn.metrics
import autosklearn.classification
数据加载¶
X, y = sklearn.datasets.load_breast_cancer(return_X_y=True)
X_train, X_test, y_train, y_test = sklearn.model_selection.train_test_split(
X, y, random_state=1
)
留出法¶
automl = autosklearn.classification.AutoSklearnClassifier(
time_left_for_this_task=120,
per_run_time_limit=30,
tmp_folder="/tmp/autosklearn_resampling_example_tmp",
disable_evaluator_output=False,
# 'holdout' with 'train_size'=0.67 is the default argument setting
# for AutoSklearnClassifier. It is explicitly specified in this example
# for demonstrational purpose.
resampling_strategy="holdout",
resampling_strategy_arguments={"train_size": 0.67},
)
automl.fit(X_train, y_train, dataset_name="breast_cancer")
AutoSklearnClassifier(ensemble_class=<class 'autosklearn.ensembles.ensemble_selection.EnsembleSelection'>,
per_run_time_limit=30,
resampling_strategy_arguments={'train_size': 0.67},
time_left_for_this_task=120,
tmp_folder='/tmp/autosklearn_resampling_example_tmp')
获取最终集成模型的得分¶
predictions = automl.predict(X_test)
print("Accuracy score holdout: ", sklearn.metrics.accuracy_score(y_test, predictions))
Accuracy score holdout: 0.958041958041958
交叉验证¶
automl = autosklearn.classification.AutoSklearnClassifier(
time_left_for_this_task=120,
per_run_time_limit=30,
tmp_folder="/tmp/autosklearn_resampling_example_tmp",
disable_evaluator_output=False,
resampling_strategy="cv",
resampling_strategy_arguments={"folds": 5},
)
automl.fit(X_train, y_train, dataset_name="breast_cancer")
# One can use models trained during cross-validation directly to predict
# for unseen data. For this, all k models trained during k-fold
# cross-validation are considered as a single soft-voting ensemble inside
# the ensemble constructed with ensemble selection.
print("Before re-fit")
predictions = automl.predict(X_test)
print("Accuracy score CV", sklearn.metrics.accuracy_score(y_test, predictions))
Before re-fit
Accuracy score CV 0.965034965034965
执行再训练¶
在 fit() 期间,模型在单独的交叉验证折叠上进行拟合。为了使用所有可用数据,我们调用 refit(),它会在整个数据集上训练最终集成中的所有模型。
print("After re-fit")
automl.refit(X_train.copy(), y_train.copy())
predictions = automl.predict(X_test)
print("Accuracy score CV", sklearn.metrics.accuracy_score(y_test, predictions))
After re-fit
Accuracy score CV 0.958041958041958
scikit-learn 切分器对象¶
也可以使用scikit-learn 的切分器类来进一步自定义输出。如果需要对切分有 100% 的控制权,可以使用scikit-learn 的 PredefinedSplit。
下面是使用预定义切分的示例。我们按第一个特征切分训练数据。在实践中,应根据具体的用例进行切分。
selected_indices = (X_train[:, 0] < np.mean(X_train[:, 0])).astype(int)
resampling_strategy = sklearn.model_selection.PredefinedSplit(
test_fold=selected_indices
)
automl = autosklearn.classification.AutoSklearnClassifier(
time_left_for_this_task=120,
per_run_time_limit=30,
tmp_folder="/tmp/autosklearn_resampling_example_tmp",
disable_evaluator_output=False,
resampling_strategy=resampling_strategy,
)
automl.fit(X_train, y_train, dataset_name="breast_cancer")
print(automl.sprint_statistics())
auto-sklearn results:
Dataset name: breast_cancer
Metric: accuracy
Best validation score: 0.964789
Number of target algorithm runs: 25
Number of successful target algorithm runs: 25
Number of crashed target algorithm runs: 0
Number of target algorithms that exceeded the time limit: 0
Number of target algorithms that exceeded the memory limit: 0
对于自定义重采样策略(即 Auto-sklearn 未定义为字符串的重采样策略),需要执行再训练。
automl.refit(X_train, y_train)
AutoSklearnClassifier(ensemble_class=<class 'autosklearn.ensembles.ensemble_selection.EnsembleSelection'>,
per_run_time_limit=30,
resampling_strategy=PredefinedSplit(test_fold=array([0, 0, ..., 1, 1])),
time_left_for_this_task=120,
tmp_folder='/tmp/autosklearn_resampling_example_tmp')
获取最终集成模型的得分 (再次)¶
显然,这个得分相当差,因为我们通过根据第一个特征进行切分来“破坏”了数据集。
predictions = automl.predict(X_test)
print(
"Accuracy score custom split", sklearn.metrics.accuracy_score(y_test, predictions)
)
Accuracy score custom split 0.958041958041958
脚本总运行时间: ( 6 分 35.274 秒)